
MI66CH12-Jedd ARI 14 August 2012 13:56

Peroxisome Assembly and
Functional Diversity in
Eukaryotic Microorganisms
Laurent Pieuchot and Gregory Jedd
Temasek Life Sciences Laboratory and Department of Biological Sciences, National University
of Singapore, 117604 Singapore; email: laurent@tll.org.sg, gregory@tll.org.sg

Annu. Rev. Microbiol. 2012. 66:237–63

The Annual Review of Microbiology is online at
micro.annualreviews.org

This article’s doi:
10.1146/annurev-micro-092611-150126

Copyright c© 2012 by Annual Reviews.
All rights reserved

0066-4227/12/1013-0237$20.00

Keywords

glycosome, Woronin body, meiocyte, biogenesis, peroxisomal targeting
signal, evolution

Abstract

Peroxisomes are core eukaryotic organelles that generally function in lipid
metabolism and detoxification of reactive oxygen species, but they are in-
creasingly associated with taxa-specific metabolic, cellular, and developmen-
tal functions. Here, we present a brief overview of peroxisome assembly,
followed by a discussion of their functional diversification. Matrix protein
import occurs through a remarkable translocon that can accommodate folded
and even oligomeric proteins. Metabolically specialized peroxisomes include
glycosomes of trypanosomes, which have come to compartmentalize most of
the glycolytic pathway and play a role in developmental signal transduction.
The differentiation of physically distinct subcompartments also contributes
to peroxisome diversification; in the clade of filamentous ascomycetes, dense-
core Woronin bodies bud from peroxisomes to gate cell-to-cell channels.
Here, the import of oligomeric cargo is central to the mechanism of subcom-
partment specification. In general, the acquisition of a tripeptide peroxisome
targeting signal by nonperoxisomal proteins appears to be a recurrent step
in the evolution of peroxisome diversity.
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Peroxisome: single-
membrane-bound
eukaryotic organelle
generally associated
with lipid metabolism

Glycosome:
specialized peroxisome
housing a subset of
enzymes involved in
glycolysis and playing
a role in
developmental signal
transduction

Woronin body:
a physically and
functionally distinct
peroxisome
subcompartment
involved in cellular
wound healing in
filamentous
ascomycetes

PTS1: peroxisome
targeting signal 1

PTS2: peroxisome
targeting signal 2
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INTRODUCTION

Peroxisomes are single-membrane-bound eukaryotic organelles involved in diverse metabolic
functions. They generally function in lipid metabolism and detoxification of reactive oxygen
species, but they are also involved in diverse taxa-specific functions. These include catabolism
of very-long-chain, D-amino acids, and polyamines in mammals; biosynthesis of plasmalogens in
mammals (181); photorespiration in leaves (132); the glyoxylate cycle in germinating seeds (90);
and assimilation of methanol in some yeasts (172). In trypanosomes, peroxisomes called glyco-
somes compartmentalize components of the glycolytic pathway and are implicated in a signaling
pathway associated with parasite development (158). Peroxisomes also play important roles in
signal transduction, such as salicylic acid signaling in plants (183), and have been implicated as
platforms for signaling in vertebrate innate immunity (18). In filamentous fungi, peroxisomes are
involved in penicillin biosynthesis (63), plant pathogenicity (67), and sexual development (8), and
they have evolved the capacity to develop a peroxisome subcompartment known as the Woronin
body, which performs an adaptive function in gating fungal cell-to-cell channels. Here we re-
view peroxisome biogenesis, function, and dynamics, and provide an overview of their remarkable
functional plasticity in eukaryotic microorganisms.

PEROXISOME ASSEMBLY

Matrix Protein Import

More than 30 genes involved in the biogenesis of peroxisomes (PEX genes) have been identified.
Mutations in genes coding for the components of the matrix protein import machinery lead to
the formation of ‘‘ghosts,’’ or empty peroxisome remnants, in which membrane proteins are still
inserted into the lipid bilayer. This demonstrates that matrix and membrane proteins are imported
by distinct pathways.

Cargo recognition. Peroxisome matrix proteins are synthesized on free polyribosomes in the
cytosol and imported posttranslationally (29, 180). Their targeting to peroxisomes depends on
short sequences known as peroxisomal targeting signal (PTS) type 1 and type 2. PTS1 is present
in the majority of matrix proteins and consists of a C-terminal tripeptide (S/A/C)(K/R/H)L (38).
PTS2 is a degenerated nonapeptide (R/K)(L/V/I)X5(H/Q)(L/A) found near the N terminus that,
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Figure 1
(a) PTS1 matrix import cycle. Cargo, which can be oligomeric, is recognized by Pex5 and docks with the membrane through the
docking peroxins Pex13, Pex14, and Pex17. (Right) The cargo-receptor complex crosses the membrane via an unknown mechanism that
may involve the formation of a transient pore. The Pex5 receptor is monoubiquitinated and recycled to the cytosol through the AAA
ATPases Pex1 and Pex6. (Left) In the RADAR pathway, dysfunctional Pex5 can be polyubiquitinated and targeted to the proteasome
for degradation. Adapted from Reference 145 with permission. (b) PMP integration. PMPs possessing a mPTS are recognized
posttranslationally by Pex19p and delivered to the membrane through interaction with Pex3, where the PMP is released and integrated
into the membrane. Adapted from Reference 40 with permission. Abbreviations: PTS1/2, peroxisome targeting signal 1/2; RADAR,
receptor accumulation and degradation in the absence of recycling; PMP, peroxisomal membrane protein; mPTS, membrane
peroxisome targeting signal; TMD, transmembrane domain.

TPR:
tetratricopeptide
repeat

Peroxin: protein
associated with
peroxisome biogenesis
and proliferation

in some species, is cleaved off after import into the peroxisomal matrix (117, 123, 157). PTS1 and
PTS2 are recognized by cycling cytosolic receptors Pex5 and Pex7, respectively.

Pex5 contains a conserved C-terminal domain composed of tetratricopeptide repeats (TPRs)
that directly bind the PTS1 of peroxisomal cargo (11, 33). The crystal structure of the Pex5 TPR
domains shows that this protein undergoes dramatic conformational changes upon cargo binding
(154). In a few cases the N-terminal half of Pex5 can also mediate the binding to cargoes lacking
canonical PTS1 sequences (43, 69). This region is less conserved, disordered (154), and responsible
for docking to the cytoplasmic face of the peroxisome membrane through interaction with the
docking peroxins (Pex13, Pex14, and Pex17) (118, 119, 171) (Figure 1a).

The targeting of PTS2-bearing proteins is mediated by Pex7 together with a coreceptor that
varies from species to species: Pex18 and Pex21 in Saccharomyces cerevisiae (130), Pex20 in filamen-
tous ascomycetes (82, 120, 150, 167), and Pex5L, a splicing variant of Pex5, in plants and mammals
(9, 78). Thus, Pex5 is required for both PTS1 and PTS2 import in plants and mammals, whereas
in fungi, Pex20 allows these two pathways to function more independently.

Surprisingly, the PTS2 pathway seems to be absent in certain organisms including Caenorhab-
ditis elegans (106), diatoms (36), and probably the red alga Cyanidioschyzon merolae, in which no
PTS2-like sequences have been identified in silico (149). Instead, in those organisms, orthologs
of PTS2-containing proteins have acquired PTS1 signals (36, 106). Thus, switching of targeting
signals appears to have allowed the PTS2 pathway to be lost in certain phylogenetic lineages.

Docking and translocation. Both PTS receptor systems address their cargo to a dock-
ing/translocation platform composed of Pex13, Pex14 and, in some yeast, Pex17. Pex13 and
Pex14 bind to each other (144) and interact with both PTS receptors (19, 24, 119, 155) through
multiple binding sites. Remarkably, whereas Pex5 behaves like a soluble protein in the cytosol,
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RING: Really
Interesting New Gene

AAA ATPase:
ATPases associated
with diverse cellular
activities

membrane-associated Pex5 behaves like a transmembrane protein (39). Subsequent work showed
that during the import cycle, both receptor and cargo cross the peroxisome membrane, and this
finding has been demonstrated for Pex5 (17), Pex7 (110), and Pex20 (82). How the cargo is released
has not yet been determined. However, the intraperoxisomal peroxin Pex8 interacts with Pex5 in
vitro and stimulates the release of PTS1 peptides, suggesting one possible mechanism (182).

Recently, a new docking peroxin Pex14/17 (114), also known as Pex33 (89), has been identified
in filamentous ascomycetes. This peroxin interacts with Pex5 (89) and appears to be functionally
equivalent to yeast Pex17. Deletion mutants significantly reduce the efficiency of matrix import,
indicating that this is a bona fide new peroxin. Interestingly, in the filamentous fungus Podospora
anserina, PEX14 is required for matrix import in vegetative mycelium but it is dispensable at
certain developmental stages in meiocytes (121). In this specialized cell type, matrix import also
occurs in a pex14, pex14/17 double mutant but depends on the presence of PEX13. In Hansenula
polymorpha, overproduction of Pex5 can stimulate residual matrix import in a pex14 mutant (140),
further suggesting that matrix import can occur in the absence of Pex14. Interestingly, in Pichia
pastoris, the PTS2-dependent import of Pex8 requires Pex14, but not Pex13 and Pex17 (86).
Together, these data suggest that the composition of the docking complex can vary in a species-,
development-, and cargo-dependent manner.

Receptor recycling. Pex5 receptor recycling is initiated by monoubiquitination (128) on a con-
served N-terminal cysteine residue (185). This reaction is mediated by the RING-finger E3 ligase
Pex12 (127) and the ubiquitination conjugating enzyme Pex4, which is soluble and is recruited to
the membrane by Pex22 (71) (Figure 1a). In yeast, the intraperoxisomal peroxin Pex8 functions
as a bridge between the docking receptors and the RING complex to form the overall importomer
(1); Pex3 might also play a role in this process (48).

Following monoubiquitination, PEX5 is recycled back to the cytosol by the AAA ATPase
peroxins Pex1 and Pex6 (103, 126), which are anchored to the peroxisomal membrane through
the tail-anchored peroxin, Pex15, in yeast (6) and the orthologous function of Pex26 in animals
(95) and filamentous fungi (83) (Figure 1a). The N-terminal region of the PTS2 coreceptor Pex20
is similar to the N terminus of the PTS1 receptor Pex5 and contains conserved residues that are
essential for its recycling from the peroxisomal membrane, suggesting that Pex20 and Pex5 are
recycled through a similar mechanism (81, 82). In addition to the ATP consumed by ubiquitin
activation, receptor export is believed to be the only ATP-consuming step of the matrix import
cycle (103), leading to the concept of an export-driven import, which posits that receptor recycling
by the AAA ATPases is mechanistically coupled to cargo translocation across the membrane (145).

When components of the receptor recycling machinery are mutated, Pex5 and Pex20 cannot
be recycled back to the cytosol. Under these conditions, the receptors are polyubiquitinated at
N-terminal lysine residues and directed to the proteasome for degradation (61, 81, 82, 127, 184).
This process, called RADAR (receptor accumulation and degradation in the absence of recycling),
appears to constitute a quality-control system that prevents obstruction of the import machinery.

Import of oligomeric cargo. Some peroxisomal matrix proteins are preassembled in the cytosol
prior to import and cross the membrane as oligomers (35, 80, 98, 164, 167). Matrix proteins with
mutant PTS signals can be imported by their PTS-containing binding partners, and these types
of experiments provided definitive evidence for piggyback import into peroxisomes (21, 35, 98,
188). The fact that oligomeric cargo can be imported suggests a translocation machinery that can
expand to accommodate substrates of variable dimensions. The presence of a large and flexible
translocon is further indicated by experiments showing that 4- to 9-nm PTS1-coated colloidal
gold particles can be imported (180). This remarkable feature of the matrix import pathway leads
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PMP: peroxisomal
membrane protein

mPTS: peroxisomal
membrane protein
targeting signal

to a central question concerning how these particles cross the membrane, and indicates that this
mechanism is fundamentally different from the translocation of proteins across the endoplasmic
reticulum (ER) and mitochondrial membrane.

Electron microscopy reveals the frequent occurrence of aggregates and crystals in the per-
oxisomal matrix (68, 175, 179), indicating that some matrix proteins form extremely high-order
oligomers, and in general the functional significance of these proteins remains enigmatic. One
clear case in which functions have been ascribed to these high-order matrix oligomers is found in
the fungal HEX (Hexagonal peroxisome) protein, which uses a PTS1 signal and self-assembles to
form the Woronin body crystalline core (189). Interestingly, HEX crosses the membrane as an
oligomer, and mutants that disrupt self-assembly lead to dominant-negative effects on PTS1 im-
port, but not on PTS2 import (83). This suggests that under normal conditions, HEX oligomers
promote import efficiency by allowing each cycle of PEX5 action to import multiple HEX pro-
teins. This provides one physiological context in which the import of oligomers is beneficial.
HEX oligomers also appear to influence subcompartment specification (83), further suggesting
that import of oligomers can influence peroxisome fate.

Nature of the translocon. Several models have been proposed to account for the ability to im-
port folded and oligomeric proteins. These include a membrane invagination mechanism and the
opening of a static pore (99, 156). Another model suggests the formation of a transient pore (156)
formed by the import receptors themselves (25). Several lines of evidence support this model.
Membrane-associated Pex5 behaves like an integral membrane protein (39), and patch-clamp ex-
periments show that large-conductance channels are present in the membranes of mammalian
peroxisomes (76, 79). Recently, a membrane-associated Pex5-Pex14 complex was purified, recon-
stituted into planar lipid membranes, and subjected to current recordings to obtain evidence for
channel activity (101). PTS1-bearing peptides alone had no effect on these preparations. However,
purified cytosolic Pex5 loaded with cargo induced conductance channel gating events consistent
with a pore of 2.8 nm, and when a large oligomeric cargo was used this value increased up to
9.25 nm. The putative translocon present in these preparations was produced from a pex8 mutant
and was not associated with the RING complex. Thus, a major challenge for the future is to
reconstitute the entire importomer complex and the full import cycle.

Membrane Targeting and Biogenesis

The majority of PEX genes are implicated in the process of matrix protein import or the regulation
of peroxisome number and size. Mutants defective in matrix import typically accumulate empty
peroxisomes that contain peroxisomal membrane proteins (PMPs). However, in yeast, loss of
one of only two genes, pex3 and pex19, leads to the complete absence of peroxisomal membrane
remnants, suggesting that these functions are essential for membrane biogenesis (49).

Direct targeting of PMPs to peroxisomes. In the pathway for direct targeting, PMPs are
believed to be synthesized on free cytosolic ribosomes and subsequently imported directly to the
peroxisome membrane. This process depends on membrane peroxisome targeting signals (mPTSs)
consisting of short stretches of basic amino acids associated with hydrophobic transmembrane
domains (133). In this pathway, Pex19 functions as a cycling chaperone, which recognizes the
mPTS of PMPs and ferries them to the membrane where PMP integration follows docking to
Pex3 (28, 58, 133) (Figure 1b). In vitro systems have been used to reconstitute PMP membrane
integration, and these studies show that Pex19 can keep PMPs in an import-competent state
before docking to the membrane through a physical interaction with Pex3 (97, 124). Consistent
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with this, fluorescence resonance energy transfer (FRET) experiments suggest that the interaction
between Pex3 and Pex19 occurs mainly at the peroxisomal membrane (109). Interestingly, cargo-
loaded Pex19 has a higher affinity for Pex3 than does free Pex19, suggesting that the mPTS
or transmembrane domains of the PMP also contribute to Pex3 binding (124). The C-terminal
region of Pex19p forms a globular α-helical domain that binds the mPTS of PMPs (147), and a
distinct N-terminal region is responsible for binding to Pex3 (143, 146).

Pex19 also possesses a farnesylated C-terminal CaaX box. Yeast mutants in which Pex19 cannot
be farnesylated produce peroxisomes, but contain significantly reduced steady-state levels of PMPs
and show defects in matrix import, which are presumably a secondary consequence of defects in
PMP import (136). In addition, PMP recognition is 10 times more efficient when Pex19 is farne-
sylated (136). Together, these observations suggest that farnesylation promotes Pex19 function,
possibly by promoting its interaction with the membrane and/or hydrophobic transmembrane
domains associated with the mPTS.

PMP trafficking via the ER. N- and O-linked glycosylation occurs in the lumen of the ER,
and several PMPs receive these types of modification, suggesting ER–to–peroxisome trafficking.
These PMPs include Pex2 and Pex16 in Yarrowia lipolytica (165) and Pex15 (20, 77) and Pex3 (72)
in S. cerevisiae. In addition, the putative mPTS signals of Pex3 and Pex22 do not interact with
Pex19 (47), implying that these proteins follow a different pathway to the membrane. Furthermore,
mutations that interfere with the Sec61 translocon (163, 173) and ER exit (165) also interfere with
PMP trafficking. Get3 is a chaperone responsible for the integration of tail-anchored proteins
into the ER, and loss of function in this system leads to mistargeting of the tail-anchored per-
oxin Pex15 (148, 173). Further evidence for ER trafficking comes from pulse-chase experiments
that follow the reappearance of peroxisomes in peroxisome-free cells. Here, a Pex3 GFP (green
fluorescent protein) fusion is first seen in the ER and later in punctate structures that mature to
eventually attain the capacity to import matrix proteins (50, 72, 105, 160). In P. pastoris, Pex30
and Pex31 also appear to traffic via the ER (187). Although there is abundant evidence to show
that PMPs can transit the ER en route to the peroxisome, more work is required to identify the
machinery involved in trafficking. Interestingly, mutations in Pex1 and Pex6 delay ER exit of
Pex2 and Pex16 in Y. lipolytica (165). Pex1 and Pex6 have also been associated with fusion of pre-
peroxisomal vesicles (166), suggesting that they may be involved in ER–to–peroxisome trafficking
(Figure 2).

Peroxisome Proliferation

Peroxisome abundance can vary dramatically depending on cellular need and environmental con-
ditions. Peroxisomes can proliferate through growth and division of preexistent peroxisomes and
they can also arise de novo from the ER.

Proliferation by growth and division. Peroxisome proliferation follows a multistep process in-
volving the Pex11-dependent tubulation of peroxisomes, followed by dynamin GTPase-dependent
scission of the elongated organelles (reviewed in Reference 116) (Figure 2). Pex11p is the first
protein identified as being involved in peroxisome proliferation in yeast (23). Here, loss of Pex11
leads to reduced peroxisome abundance and enlarged peroxisomes (23). By contrast, its overex-
pression produces cells crowded with elongated clusters of peroxisomes (92). Pex25 and Pex27
are two additional S. cerevisiae isoforms that share weak similarities with Pex11. Both are involved
in peroxisome division and appear to have partially redundant functions with Pex11p (134). The
activity of Pex11p appears to be tightly regulated. In yeast, PEX11 expression is stimulated when
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Figure 2
Peroxisome biogenesis and proliferation. Peroxisomes can multiply by growth and division or rise de novo
from the ER. In the de novo pathway, Pex3 is targeted to the ER membrane and may bud in a Pex19-
dependent manner to form a pre-peroxisome, which matures through the import of additional PMPs to
eventually acquire the capacity to import matrix proteins. PMPs may also be inserted into the ER membrane
and traffic to the peroxisome membrane. Please see text for additional information. Abbreviations: ER,
endoplasmic reticulum; PMP, peroxisomal membrane protein; DRP, dynamin-related protein.

DLP: dynamin-like
protein

peroxisome proliferation is induced (151, 174), and the activity of Pex11 is also regulated by
phosphorylation (70, 139). Interestingly, recent work shows that Pex11 has the inherent ability to
sculpt membrane curvature through the insertion of a conserved N-terminal amphipathic helix
into the membrane, and this provides a molecular mechanism for its mode of action (115). A
number of other peroxins have been associated with peroxisome division and they display varying
interactions with one another and Pex11 (168, 176, 177, 187), suggesting that the number and size
of peroxisomes are controlled by a complex network of interacting peroxins. In Y. lipolytica, Pex16
is intraperoxisomal and functions as a negative regulator of division. As peroxisomes mature to
attain a high matrix protein density, acyl-CoA oxidase (Aox) is relocalized from the matrix to the
inner face of the membrane, where it inhibits Pex16 function and triggers modification of mem-
brane lipid composition. This further promotes recruitment of the cytosolic division machinery
(44, 45) and provides a means of coordinating peroxisome maturation and division. The absence
of Pex16 in most other yeast suggests that this type of regulation is achieved through diverse
mechanisms.

After tubulation, peroxisome division requires the function of dynamin-like protein (DLP)
GTPases, which are involved in various cellular membrane fission events. DLPs oligomerize
around membranes, forming ring-like structures that, after GTP hydrolysis, cause deforma-
tion and ultimately scission of the membranes (for review, see Reference 129). The DLPs Vps1
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and Dnm1 are involved in peroxisome fission in yeast (51, 75, 105, 178). Dnm1 is recruited to
peroxisomes via Mdv1 and Caf4, which are linked to the peroxisomal membrane via the tail-
anchored protein Fis1 (107). Fis1 is targeted to mitochondria, where it promotes fission through
the same factors (for review, see Reference 113). This suggests that these two organelles share this
fission machinery and that this might function to coordinate their biogenesis. Vps1 also functions
in peroxisome fission, but it is not recruited to peroxisomes via Fis1 and instead seems to require
Pex19 for peroxisome association (178). A recent study in S. cerevisiae shows that Pex34 interacts
with Pex11, Pex25p, and Pex27p, as well as Fis1p, establishing in yeast a link between Pex11
proteins and the fission machinery (168).

De novo formation of peroxisomes from the ER. In yeast, pex3 and pex19 mutants are devoid
of peroxisome membranes. However, their reintroduction can induce the de novo formation of
peroxisomes. In this case, Pex3p traffics from the ER to punctate structures that gradually attain
the capacity to import matrix proteins in a process that depends on Pex19 (50, 72, 105, 160)
(Figure 2). On the basis of their known function in promoting PMP integration, Pex3 and Pex19
are believed to recruit additional PMPs to pre-peroxisomal vesicles to eventually reconstitute the
matrix import pathway. Moreover, Pex3 targeted to mitochondria can induce the formation of
import-competent peroxisomes in Pex3-deficient S. cerevisiae cells, further suggesting that Pex3
can initiate the de novo peroxisome biogenesis pathway from diverse membranous precursor (135).
In H. polymorpha, the reintroduction of peroxisomes also requires Pex25, a relative of Pex11, and
the Rho1 GTPase (142). Pex25 was previously shown to interact with Rho1 in S. cerevisiae (91).
However, whether these represent conserved or taxa-specific functions required for the de novo
pathway remains to be determined. In animal cells, pex16 mutants also lack peroxisome remnants,
and Pex16 is believed to be responsible for recruiting Pex3 to the membrane either directly (96)
or via the ER (66). Pex16 is absent in most yeast but is present in Y. lipolytica, where it acts as a
negative regulator of peroxisome division (45). Interestingly, Pex16 is present in all filamentous
ascomycetes (64), and in Neurospora crassa, a pex16 mutant is defective in the PTS1 matrix import
pathway (84), suggesting a more central role for this peroxin in the filamentous ascomycetes, which
warrants further investigation.

The degree to which de novo biogenesis and the division of preexisting organelles contribute to
normal peroxisome proliferation remains an open question. The importance of these two pathways
may vary significantly from species to species and depending on cellular physiology. In yeast, the
de novo pathway was initially observed only in the absence of preexistent peroxisomes. Using
pulse-chase and mating assays, it has been shown that the de novo pathway is slow and engaged
only when peroxisomes are absent due to defects in inheritance (105). Interestingly, when a pex19
mutant background is used to accumulate Pex3p in the ER and this strain is mated with a wild-type
strain, Pex3 appears to rapidly traffic directly to preexistent peroxisomes rather than follow the
slow de novo pathway. This, together with the rapid kinetics of ER–to–peroxisome trafficking
in Y. lipolytica (165), conforms to the notion that the pathway for sorting PMPs from the ER to
peroxisomes may be partially or fully independent of the de novo peroxisome assembly pathway
(Figure 2).

In vitro budding assays. In vitro assays have recently been developed to examine the production
of pre-peroxisomal vesicles from the ER. In S. cerevisiae, a modified form of the tail-anchored
peroxin Pex15 (Pex15G) containing a lumenal glycosylation domain appears to traffic from the
ER to peroxisomes in wild-type cells and accumulates in the ER of pex19 mutant cells (77). Using
microsomes from this strain, in vitro assays show that Pex15G together with Pex3 is packaged
into vesicles in a reaction that requires Pex19, ATP, and additional cytosolic factors (77), but is
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COPII: coat protein
complex II

independent of the COPII (coat protein complex II) coat. Similar results have been obtained in
a complementary P. pastoris system (2), in which both Pex11 and Pex3 are integrated into vesicles
emerging from the ER, and here too the budding mechanism is cytosol, ATP, and Pex19 depen-
dent. Surprisingly, Pex11 budding was independent of Pex3, but these vesicles are devoid of most
of the PMPs present in Pex3 vesicles and might represent peroxisomal remnants (2). Nevertheless,
this raises the possibility that Pex19 can promote vesicle budding independently of Pex3. The
mode of action of Pex19 in the budding process is unclear. In animal cells, Pex16 lacking its mPTS
is trapped in the ER, suggesting that the mPTS is required for Pex16 trafficking to peroxisomes
(66). This implies that Pex19 might act in pulling out the budding vesicle via its interaction with
the mPTS of PMPs (85). Pex19 alone is not sufficient for budding; thus, the identification of
essential cytosolic factors should help define the budding mechanism and its ATP requirement.

FUNCTIONAL DIVERSIFICATION OF PEROXISOMES

The set of proteins involved in peroxisome biogenesis and maintenance is highly conserved,
suggesting a single evolutionary origin of this cellular compartment. However, the peroxisomal
enzymatic content can vary substantially in different groups of organisms and this appears to be
the result of the evolutionary acquisition of PTS targeting signals. The most pronounced example
of this is the peroxisomal glycosome of trypanosomes, which has evolved to compartmentalize
most of the enzymes for glycolysis. Woronin bodies of filamentous ascomycetes provide another
example of functional diversification through the evolution of a complex sorting machinery that
enables production of a physically distinct peroxisome subcompartment.

Glycolysis in Trypanosomes

Trypanosomatids are the causal agents of sleeping sickness, leishmaniasis, and Chagas’ disease. In
addition to glycolysis, glycosomes also contain the canonical peroxisome functions and a variety
of other pathways. Glycolysis in other eukaryotes is essentially cytosolic; thus, its compartmen-
talization in these cells is unique and of great interest.

Glycosomes during the trypanosome life cycle. Trypanosomes are transmitted between their
mammalian hosts by blood-feeding insects and experience highly different environments within
these hosts. The enzymatic content of glycosomes varies considerably during the life cycle. In the
animal host, the parasite (long-slender form) is in a glucose-rich environment, where mitochon-
drial oxidative phosphorylation is repressed and all the ATP is generated through glycosomal
glycolysis (10). At this point, glycolytic enzymes represent 90% of the protein content of the
organelle (102). By contrast, in the insect host, the concentration of sugars is low. While still
in the bloodstream, the parasite can differentiate into a short-stumpy form preadapted for life
in the insect. This form of the parasite has a partially derepressed mitochondrial system, which
allows the parasite to survive in the low-sugar environment of the insect midgut. Here, exposure
to environmental signals (16) triggers differentiation into a procyclic form that is fully adapted to
the insect host.

Differentiation of the short-stumpy form into the procyclic form is repressed by the activity of
a tyrosine phosphatase, TbPTP1 (159). Upon ingestion by the insect host, TbPTP1 is inactivated
and differentiation into the procyclic form occurs. The downstream component in this develop-
mental signaling pathway is a Ser/Thr phosphatase, TbPIP39, which is inhibited by tyrosine phos-
phorylation and is thus negatively regulated by TbPTP1 (158). During differentiation, TbPIP39
is rapidly phosphorylated by a yet unidentified kinase and its RNAi-mediated depletion inhibits
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phospho-:
phosphorylated form

HXK: hexokinase

PFK:
phosphofructokinase

development of the procyclic form, indicating a key role in promoting this developmental transi-
tion. Remarkably, TbPIP39 possesses a consensus PTS1 signal (−SRL, serine-arginine-lysine or
Ser-Arg-Lys), which is required for function, and shows perfect colocalization with a glycosomal
marker (158). TbPTP1 is presumably cytosolic, and this raises the question of how it can regulate
TbPIP39. TbPIP39 protein is induced with differentiation, and this nascent TbPIP39 can be
subject to phosphorylation/dephosphorylation in the cytosol before import into the peroxisome.

How phospho-TbPIP39 promotes differentiation from within the glycosome, and whether
this relates to glycosomal metabolism or further signal transduction, remains an open question.
Glycosomes are predicted to contain over 200 proteins (13), and in principle any of these could be
subject to regulation by TbPIP39. Other members of this family possess lipid phosphatase activity
(158), suggesting possible regulation through second messengers.

The importance of glycolysis compartmentation. Glycolysis is initiated by hexokinase
(HXK) and phosphofructokinase (PFK), which phosphorylate glucose to produce fructose 1,6-
bisphosphate (Fru1,6BP). These initial reactions consume two ATP molecules, while net ATP
production only comes from downstream reactions. Because this ATP can fuel the activity of HXK
and PFK beyond the capacity of downstream reactions, the overall reaction is autocatalytic and can
result in the depletion of cellular ATP and the accumulation of hexose phosphate intermediates
[glucose 6-phosphate (Glc6P), fructose 6-phosphate (Fru6P), and Fru1,6BP] to toxic levels. In
most organisms, glycolysis is cytosolic and this consequence is avoided by tight negative-feedback
regulation of HXK and PFK by hexose phosphates. This regulation ensures that upstream re-
actions do not exceed the capacity of downstream reactions. This type of regulation is absent in
trypanosomes (15, 112). However, glycosomal reactions result in no net ATP synthesis, which
only occurs in terminal cytosolic reactions, where this ATP is unavailable to glycosomal HXK and
PFK. Thus, in trypanosomes, feedback regulation appears to be replaced by partial glycosomal
compartmentation.

Several studies using RNAi to disrupt glycosomal function support this model. RNAi against
Pex2 (42), Pex14 (30, 46, 60), Pex6, Pex10, or Pex12 (73) leads to the cytosolic mislocalization of
glycosomal enzymes and cell death. Cell death can also be triggered by the addition of glucose
(30), which results in the accumulation of Glc6P (46), and depletion of HXK has a protective
effect on glycosome-deficient trypanosomes (60). The role of compartmentalization is further
demonstrated in Leishmania donovani, another kinetoplastid parasite, in which the expression of a
catalytically active PTS2-truncated HXK located in the cytoplasm also engenders glucose toxicity
(74). Together, these data suggest that glycosomal compartmentation provides an alternative to
allosteric regulation of HXK and PFK and protects trypanosomes from the autocatalytic nature
of glycolysis (46).

Origins of glycosomal compartmentation. Analysis shows that the majority of glycolytic en-
zymes use PTS1 signals, whereas others utilize PTS2 and internal PTS (iPTS) signals (reviewed
in Reference 14). Interestingly, functional analyses of these various PTS1 targeting signals show
that glycosomes tolerate a greater degree of degeneration in the PTS1 sequence than do animal
peroxisomes. For example, the signal -SSL is functional in trypanosomes but nonfunctional in
animal cells (7). From an evolutionary perspective, the shift of glycolysis from a cytosolic to a
glycosomal localization presents an interesting problem given that the PTS1 signal is acquired
by random mutation and must have been acquired sequentially by these various enzymes. In this
case, it is likely that early intermediates in these signals were partially functional and led to dual
localization in peroxisomes and the cytosol as previously suggested (31, 41). This situation could
sustain functional glycolysis until all the required enzymes had acquired rudimentary PTSs, at
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which point these could be refined by further mutation for full functionality. Further sampling of
the peroxisomal environment may have been facilitated by the loose glycosomal PTS1 consensus
(7), which is due presumably to variation in the PTS1 receptor PEX5.

Glycosomes as a target for therapeutic drugs. The emergence of drug-resistant trypanosomes
is becoming a major problem, making the development of new medicines critical. The identifica-
tion of several known peroxins and their associated functions in Trypanosoma brucei clearly supports
the view that membrane biogenesis (3) and protein import (32) mechanisms are conserved be-
tween peroxisomes and glycosomes. However, the sequence conservation between human and
trypanosomal peroxins and glycosomal enzymes is low (14). For example, TbPex19 possesses only
20% sequence identity to human PEX19 (3), 32% between TbPex7 and its human homolog (32),
and 36% between HsPex6 and TbPex6 (73). This suggests that specific inhibitors can be designed
to interfere with essential glycosomal functions without affecting human peroxisomal function.

Other Taxa-Specific Functions

Biotin biosynthesis. Among the eukaryotes, only plants and some fungi are able to synthesize
biotin. Although the final steps are well characterized and occur in mitochondria, the initial
events leading to the biosynthesis of biotin were unknown until recently. In the filamentous fungi
Aspergillus oryzae and Aspergillus nidulans, peroxisome mutants are auxotrophic for biotin (87, 161).
Moreover, the biotin biosynthetic enzyme encoded by the bioF gene (8-amino-7-oxononanoate
synthase) has a PTS1 and its peroxisomal localization is required for biotin biosynthesis (87, 161),
as is an intact β-oxidation cycle (87). Biotin auxotrophies induced by defects in β-oxidation can be
complemented by pimelic acid supplementation, suggesting that the substrate for BioF is pimeloyl-
CoA generated via peroxisomal β-oxidation (87). Peroxisomal targeting of the BioF ortholog also
occurs in Arabidopsis, suggesting that peroxisomes are important for biotin biosynthesis in plants.

Secondary metabolism: penicillin biosynthesis. β-lactam antibiotics such as penicillins and
related cephalosporins are produced as secondary metabolites by certain actinomycetes and fil-
amentous fungi (e.g., Penicillium, Aspergillus, and Acremonium species). These compounds are of
particular interest in the treatment of bacterial infections and contribute to over 40% of the to-
tal antibiotic market. The principal organism used for their production is the fungus Penicillium
chrysogenum. Penicillin biosynthesis is initiated in the cytoplasm, where the three amino acids
α-aminoadipic acid, cysteine, and valine are converted to a peptide by the nonribosomal peptide
synthetase, δ-(L-aminoadipyl)-L-cysteinyl-D-valine. This peptide is then cyclized by isopenicillin
N synthase to form a β-lactam to produce isopenicillin N (IPN). These first two steps occur in the
cytosol and the intermediate IPN is then imported into the peroxisome through action of the PMP
CefP (170). The final two reactions occur in the peroxisome: Isopenicillin-N:acyl-CoA acyltrans-
ferase (IAT) replaces the α-aminoadipyl side chain of IPN for a hydrophobic acyl group, which
is provided by activity of the phenylacetyl CoA ligase (PCL) (100), and both of these enzymes
possess consensus PTS1 signals (−ARL, alanine-arginine-leucine or Ala-Arg-Leu in IAT, and
−AKL, alanine-lysine-leucine or Ala-Lys-Leu in PCL). The related cephalosporins (produced by
Acremonium chrysogenum) are also produced from the IPN precursor, and two of these enzymes
appear to be peroxisomal and utilize PTS1 signals (62, 93).

Several lines of evidence suggest that peroxisomal localization plays an important role in peni-
cillin biosynthesis. A mutant in IAT lacking its PTS1 signal fails to produce penicillin (108), and
a variety of mutants in Penicillium chrysogenum (100, 114) and Aspergillus nidulans (153) defective
in matrix import are also defective in penicillin production. Peroxisome abundance also appears
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GGPP:
geranylgeranyl-
pyrophosphate

to correlate positively with penicillin production (100). Interestingly, overproduction of either
PEX14/17 (114) or PEX11 (63) leads to a twofold increase in penicillin production. The latter
case is probably working through increased peroxisome abundance. However, not all conditions
that increase peroxisome abundance lead to increased penicillin production (100). For example,
growth on fatty acids leads to increased peroxisome abundance and decreased penicillin produc-
tion. Thus, physiological factors also affect the peroxisomal contribution to penicillin production.
Recently, the penicillin biosynthetic pathway has been reconstituted in the yeast H. polymorpha,
and here too strains lacking peroxisomes produce less penicillin (34). From all these data it is clear
that peroxisomal localization is important for the biosynthesis of β-lactam antibiotics. However,
precisely how peroxisomes support these biosynthetic pathways remains to be determined.

Secondary metabolism: AK-toxin and paxilline biosynthesis. The filamentous fungus
Alternaria alternata includes seven pathogenic variants that produce host-specific AK (Alternaria
kikuchiana) toxins, and causes black spot disease of Japanese pear. Three enzymes responsible for
AK-toxin biosynthesis (Akt1p, Akt2p, and Akt3p) are targeted to peroxisomes through their PTS1
signals (SKI, serine-lysine-isoleucine or Ser-Lys-Ile; SKL, serine-lysine-leucine or Ser-Lys-Leu;
and PKL, proline-lysine-leucine or Pro-Lys-Leu) (55). In addition, a pex6 mutant is deficient in
AK-toxin production and pathogenicity, suggesting that peroxisome localization of these enzymes
is essential for AK-toxin biosynthesis. Paxilline is another secondary metabolite produced by Peni-
cillium paxilli. This indole-diterpene has the ability to block calcium-activated potassium channels
(141). Paxilline biosynthesis requires the activity of the geranylgeranyl-pyrophosphate (GGPP)
synthase, PaxG, and this enzyme is localized in peroxisomes through a PTS1 signal, which is also
required for PaxG function (137). From these two examples, it seems likely that additional links
between peroxisomes and other secondary metabolic pathways will emerge in the future.

Sexual development in a filamentous ascomycete. A series of studies on the filamentous as-
comycete Podospora anserina reveals a role for peroxisomes in sexual development (5, 8, 122).
In the filamentous ascomycetes, sexual development takes place in multicellular fruiting bodies
in which meiocytes (asci) differentiate to support karyogamy, meiosis, and sporulation (191). In
P. anserina, deficiency for the RING complex peroxin PEX2 was originally shown to block meiotic
commitment in meiocytes just before karyogamy (5). The two other components of the RING
complex, PEX10 and PEX12, are also required for this process (122), but both matrix import re-
ceptors, PEX5 and PEX7, are dispensable (8) as are the docking peroxins PEX14 and PEX14/17
(121). However, the docking peroxin PEX13 and the PTS2 coreceptor PEX20 are required for
meiocyte differentiation as are both PEX3 and PEX19. The requirement of a known cycling im-
port receptor (PEX20), a docking peroxin (PEX13), and the RING peroxins suggests that the
meiocyte-specific function of the peroxisome is associated with a modified matrix import cycle.
Identifying the meiotic substrates of this import pathway remains a key challenge for the future
and this should help resolve whether the meiocyte-specific function of peroxisomes is metabolic
or cellular in nature. In addition, contrary to the case for Podospora, meiosis in Aspergillus nidu-
lans does not require Pex13 (54) or Pex2 (53), and understanding this difference as well as the
phylogenetic distribution of the link between peroxisomes and meiocyte development is another
important question for future work.

Woronin Body Subcompartment

Filamentous fungi grow through the extension of cellular filaments (hyphae), in which individ-
ual cellular compartments are interconnected through conducting channels called septal pores.
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Figure 3
Woronin body biogenesis and function in Neurospora crassa. (a) Woronin body biogenesis in apical compartments. Woronin bodies are
manufactured continuously in differentiated apical peroxisomes through a process determined in part by polarized hex gene expression.
Coincident with septation, Woronin bodies attach to the cell cortex in a step that promotes their segregation into subapical
compartments. (b) Woronin bodies in septal pore plugging, membrane resealing, and tip growth. Tip lysis triggers Woronin body
release and septal pore plugging, followed by membrane resealing and the generation of new hyphal tips. Because tip lysis is likely the
most common form of hyphal damage in nature, Woronin body production in apical compartments ensures that overall cell damage is
minimal. (c) Model for differentiation of Woronin body–producing peroxisomes in N. crassa. Woronin bodies are produced in enlarged
peroxisomes, which differentiate through the action of HEX oligomers. HEX acts by recruiting WSC (Woronin sorting complex) and
PEX26 to these peroxisomes. (Left) HEX and PEX26 compose elements of a positive-feedback loop that promotes matrix import and
the emergence of these differentiated peroxisomes. See text for additional information. (Right) A nascent Woronin body budding from
the peroxisome. (d ) The mature Woronin body is immobilized at the cell cortex by the tethering protein Leashin until signals from
wounding trigger its release. Abbreviations: TM, transmembrane.

This syncytial multicellular organization allows the transport of cytoplasm and organelles be-
tween cells, permits cellular cooperativity, and is especially suited to support the invasive growth
of saprotrophs and pathogens alike. However, this organization also carries the risk of uncon-
trolled cytoplasmic bleeding when hyphae are damaged. Woronin bodies evolved over 400 mya
in the common ancestor of filamentous ascomycetes; they perform an adaptive function to seal
septal pores in response to cellular wounding (56, 169) (Figure 3a,b). Their biogenesis requires a
dedicated machinery that promotes budding from the peroxisome and tethering to the cell cortex
for segregation (Figure 3c). Interestingly, the import of oligomeric PTS1-bearing cargo is central
to this mechanism of subcompartment differentiation.
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The self-assembled Woronin body dense-core. The Woronin body dense-core is composed
of the PTS1-containing HEX protein, which is imported into peroxisomes (57, 88), where it self-
assembles into solid micrometer-scale assemblies. The size of these structures appears to always
exceed the diameter of the septal pore and this relationship relates to the pore-plugging function
of the Woronin body (169). The deletion of hex abrogates Woronin body formation and leads to
protoplasmic bleeding from septal pores in response to cell lysis (57, 94, 152). Moreover, expression
of HEX in yeast leads to the formation of Woronin body–like dense-cores inside peroxisomes (57,
186), and recombinant HEX spontaneously crystallizes in vitro (57). Together, these data show
that HEX is necessary and sufficient for Woronin body dense-core formation. The HEX crystal
structure reveals three intermolecular contacts that promote formation of the HEX protein matrix.
Mutants disrupting this assembly produce a soluble core, and despite attaining normal dimensions,
these Woronin bodies are nonfunctional because they deform and pass through the septal pore
during wound-induced plugging (189).

The overall fold of HEX is highly similar to that of eIF5a proteins, which are ancient cytoplas-
mic proteins that play a role in polypeptide chain elongation during translation (138). In addition,
HEX and eIF5a share primary sequence homology, suggesting that they are related through an-
cestral gene duplication (57). Interestingly, the sequence at the C terminus of contemporary eIF5a
proteins appears to be a single amino acid substitution away from attaining a PTS1 signal (56),
and eIF5a has been shown to reversibly form tetramers and hexamers (12). This leads to the hy-
pothesis that following eIF5a gene duplication, one copy acquired a PTS1 signal and was capable
of undergoing a degree of self-assembly in the condensing environment of the peroxisome. This
could have provided rudimentary Woronin body function that was improved over time through
extensive mutation.

Apical biogenesis and budding. Woronin body biogenesis occurs in the growing apical com-
partment, where peroxisomes producing nascent Woronin bodies move in the cytoplasm in a
generally tip-directed manner (Figure 3a). At this point HEX assemblies appear to be in the pro-
cess of budding from the peroxisome; with a timing that roughly coincides with septation, these
can be observed to associate with the cell cortex, where they are immobilized (104, 162). Following
cortex association, these hybrid organelles undergo fission, which separates the Woronin body
from its mother peroxisome, and this event depends on the action of Pex11 (26). The elastic hyphal
tip is easily ruptured by hypotonic shock and this is likely to occur frequently in nature. Thus,
apical biogenesis ensures that the first subapical compartment has functional Woronin bodies,
and as a result the outcome of tip-lysis is usually pore-plugging at the first subapical septum (94)
(Figure 3b). The expression of HEX mRNA is maximal in apical hyphal compartments and de-
creases rapidly in subapical regions of the colony (162). When the HEX expression pattern is
respecified by swapping its promoter for one that is active subapically, Woronin body formation is
redetermined to subapical compartments (162). Thus, the spatial pattern of HEX gene expression
is a key determinant of the apical localization of Woronin body biogenesis. Many other tran-
scripts are spatially regulated within the colony (59), and understanding the molecular basis for
this control is an interesting area for future research.

Woronin body cores can be observed to bud from the peroxisome matrix at the level of both
light and electron microscopy, and this process requires the Woronin body–specific membrane
protein, WSC (Woronin sorting complex) (84). In wsc mutants, instead of budding, HEX as-
semblies vibrate randomly in the matrix of apical peroxisomes. Furthermore, these structures
fail to associate with the cell cortex as they do in wild-type cells, resulting in their accumulation
in the apical compartment. Moreover, this failure in segregation explains why wsc mutants dis-
play Woronin body loss-of-function phenotypes despite producing HEX assemblies. WSC is a
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four-pass transmembrane protein and in wild-type cells, it accumulates over budding HEX assem-
blies in nascent Woronin bodies and coats mature Woronin bodies. However, it is found at very
low levels in the majority of peroxisomes, indicating that it is a Woronin body–specific membrane
protein. WSC physically associates with HEX and together these data suggest that WSC is a
membrane receptor for HEX assemblies. Interestingly, WSC behaves like a generic PMP in a hex
deletion, and this was the first evidence that HEX might play a regulatory role in subcompartment
specification (see below).

Overproduction of WSC in a hex deletion mutant results in the cortical association of per-
oxisomes that contain elevated levels of WSC. This suggests that cortex association depends on
appropriate levels of WSC in the membrane. As WSC levels in nascent Woronin bodies de-
pend on HEX, this provides a mechanism to ensure that segregation of Woronin bodies occurs
only when HEX assemblies have reached appropriate dimensions. In yeast, peroxisome segre-
gation is controlled by a balance between retention in mother cells through cortex binding and
actomyosin-dependent transport into daughter cells. In this case, cortex association depends on
the peroxisomal Inp1 protein, and the proportion of peroxisomes retained in mother cells can be
increased by increasing levels of Inp1 (reviewed in Reference 27). Thus, protein-level-dependent
cortex association may be widely used to control peroxisome segregation in fungal systems.

WSC is related to the PMP22 family of PMPs, which are also four-pass transmembrane PMPs.
PMP22 is lost in some fungal species, suggesting that it does not execute an essential function,
and this conforms to the notion that WSC could have evolved through co-option of the PMP22
function. The nearest PMP22 homolog of WSC is unable to complement a wsc deletion despite
being targeted to peroxisomes, and this further supports the idea that WSC has new and divergent
activities.

A tether for Woronin body segregation. In most of the Pezizomycotina, Woronin bodies are
found in the vicinity of the septal pore. Upon being pulled away from the septum with laser tweezers
(4), these recoil to their original position, suggesting attachment to the septum through an elastic
tether. A mutant screen in Neurospora crassa identified the leashin locus and these large (∼500-kDa)
cytosolic proteins appear to encode the Woronin body tether (111). leashin mutants accumulate
WSC-enveloped nascent Woronin bodies in the apical compartment, indicating that Leashin
is required for cortex association. An N-terminal domain of Leashin physically associates with
WSC for localization to the Woronin body and the C terminus appears to be required for cortex
binding. Central regions of Leashin proteins are not conserved but retain a similar character: they
are acidic and enriched for the amino acids, PELS (proline–glutamic acid–leucine–serine or Pro-
Glu-Leu-Ser). Similar PEVK repeats in the muscle protein titin adopt a random-coil structure
that forms an elastic filament and this may also be true of Leashin. In addition, Woronin bodies
are tethered to the pore at a distance of about 200 nm, and this spacing is in reasonable agreement
with predicted dimensions of Leashin monomers.

Neurospora and its close relative Sordaria are unique within the clade Pezizomycotina in that
they do not tether Woronin bodies to the septal pores, but rather localize them to the cell cortex
in a dispersed pattern. Phylogenetic analysis suggests that this pattern is derived from the pore-
associated pattern, and variation in Leashin appears to account for this difference. In Neurosopora,
the leashin locus encodes two adjacent genes. The 5′ gene (leashin-1) encodes the N-terminal
half of ancestral Leashin and maintains a function in Woronin body segregation, and the 3′ gene
(leashin-2) encodes the C-terminal region and is localized to the septal pore. Remarkably, in
Neurospora, a chromosomally encoded fusion of leashin-1 and leashin-2 can reproduce the ancestral
pattern, suggesting that splitting of ancestral leashin indeed underlies the evolutionary transition
in organelle localization. Interestingly, deletion of leashin-2 does not interfere with Woronin body
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NAD: nicotinamide
adenine dinucleotide

FAD: flavin adenine
dinucleotide

segregation but produces a defect in hyphal growth, suggesting that Leashin plays additional roles
in controlling cellular development. Extensive protoplasmic streaming occurs through septal pores
in both Neurospora (131) and Sordaria, and the emergence of this cellular physiology may have
provided selective pressures for evolution of the delocalized pattern of cell cortex association (125).

HEX oligomers promote functional peroxisome differentiation. HEX and WSC use con-
sensus peroxisome targeting signals (PTS1 and mPTS, respectively), indicating that Woronin
bodies are not differentiated from peroxisomes by special targeting signals. Moreover, Woronin
bodies comprise a minor fraction of the total peroxisome population (84), and this leads to the
question of how the abundance and composition of the subcompartment are controlled. This
problem was resolved in part by experiments showing that enlarged Woronin body–producing
peroxisomes are hypercompetent for matrix import and receive the majority of nascent PTS1 pro-
teins. Thus, a disparity in import competence can account for the difference between Woronin
body and peroxisome abundance (83).

Remarkably, differentiation of this subpopulation is self-organized by HEX. When HEX is
absent, PTS1 trafficking becomes uniformly distributed to abundant small peroxisomes. Moreover,
HEX is imported as an oligomer and mutations that abolish oligomer formation also abolish
functional peroxisome differentiation. The activation of matrix import in a subset of peroxisomes
suggested that HEX oligomers act by influencing the activity or localization of a key component
of the matrix import pathway. Indeed, the tail-anchored peroxin PEX26, which functions to
promote AAA ATPase membrane recruitment for receptor recycling (Figure 1), is associated with
differentiation. PEX26 is found at elevated levels in the membrane of differentiated peroxisomes,
and as with WSC (84), deletion of HEX results in uniform targeting of PEX26 to all peroxisomes.
PEX26 physically interacts with HEX through its major cytoplasmic domain, suggesting that
HEX might directly influence PEX26 localization. A pex26 hypomorph that can still support
matrix import but shows defects in differentiation results in increased Woronin body abundance,
reduced size, and diminished organelle function. Together, these data suggest that HEX and
PEX26 compose a positive-feedback loop to promote functional peroxisome differentiation and
control subcompartment abundance (83) (Figure 3c). In this model, stochastic variations in the
level of HEX import are amplified by the ability of HEX to recruit a key component of the import
machinery, resulting in the import of more HEX proteins.

More work is required to validate this model and determine whether other peroxins are required
for differentiation. In most cell types such as animal tissue culture cells, mature peroxisomes
are uniform in size and composition (52), and this type of system can be used to reconstitute
HEX-dependent peroxisome differentiation and define its minimal machinery. In the preimplex
hypothesis, mutually multivalent interactions between nascent oligomeric matrix proteins and
components of the import machinery were proposed to play an important role in the import process
(37). Although the data concerning HEX do not suggest that its oligomerization is essential for
import, they are consistent with a role in increasing import efficiency and promoting functional
organelle differentiation. Examining how multivalent interactions between components of the
import machinery and oligomeric cargo influence these processes will be an interesting area for
future investigation.

Additional functions for Woronin bodies? A number of diverse proteins involved in signaling
and development have been associated with the Woronin body. TmpL is a multipass trans-
membrane protein containing N-terminal AMP-binding domain and C-terminal NAD(P)/flavin
adenine nucleotide (FAD)-binding, which appears to segregate specifically to the membrane of
Woronin bodies (65). TmpL is required for virulence of plant and animal pathogens; in Alternaria
brassicicola, tmpL mutants are hypersensitive to oxidative stress and produce an excess of reactive
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oxygen species during plant infection, suggesting a role in redox homeostasis or signaling. In
Sordaria macrospora, PRO40 is a WW domain protein required for fruiting body formation.
PRO40 does not have putative transmembrane domains, but it localizes to Woronin bodies (22).
Finally, in Aspergillus nidulans, the ApsB (anucleate primary sterigmata) protein is a component
of the spindle pole body and a unique fungal septum-associated microtubule-organizing center.
ApsB interacts with HEX in the yeast two-hybrid system and localizes to a subset of peroxisomes
using a PTS2 signal (190). Although it remains unclear how HEX influences ApsB function,
these data provide further evidence for heterogeneity of fungal peroxisomes and imply a possible
role in cytoskeletal regulation.

In the case of TmpL and PRO40, the functional significance of Woronin body localization
remains to be determined. A network of protein-protein interactions is required for Woronin body
specification. HEX physically associates with WSC and PEX26 and Leashin interacts with WSC.
These types of interactions could also account for the localization of other proteins to the Woronin
body membrane or surface. Woronin bodies are physically distinct from the overall peroxisome
population and localize to cell-to-cell channels near the plasma membrane. It is tempting to
speculate that this unique organelle environment is suited especially to support functions in redox
regulation and the control of multicellular development.

The clade Pezizomycotina is estimated to comprise 90% of ascomycetes and half of all fungi, and
harbors the majority of plant and animal pathogens. On the basis of the phylogenetic distribution
of HEX, WSC, and leashin, Woronin bodies were fully evolved at the origin of this group (56). In the
future, it will be interesting to learn to what extent Woronin body function was further diversified
to support additional functions and promote evolutionary radiation within this diverse group.

SUMMARY POINTS

1. The peroxisome can import oligomeric cargo. The mechanism of import may involve a
transient aqueous pore composed of components of the docking complex and the cycling
PTS receptors themselves.

2. PEX19 and its receptor PEX3 are believed to direct nascent PMPs directly to the perox-
isome membrane, but they have also been associated with budding of pre-peroxisomes
from the ER.

3. Peroxisomes proliferate by growth and division but can also form de novo from
ER-derived precursors and are thus bona fide components of the endomembrane system.

4. Peroxisome function has diversified through the acquisition of new metabolic pathways
or through subcompartment development, as exemplified by glycosomes and Woronin
bodies, respectively.

5. A key step in the evolution of peroxisome diversity occurs when nonperoxisomal proteins
attain PTS1 signals. The simplicity and degeneracy of this signal are likely to promote
peroxisome evolvability.

6. Both glycosomes and Woronin bodies have been associated with signal transduction and
cellular development.

7. The import of oligomeric HEX promotes both import efficiency and subcompartment
differentiation. The latter depends on the ability of HEX import oligomers to influence
the localization of specific PMPs.
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FUTURE ISSUES

1. Pex19 and Pex3 have been associated with direct targeting of nascent PMPs to the per-
oxisome membrane and with budding of pre-peroxisomal vesicles from the ER. Further
studies are required to understand whether these activities are distinct or mechanistically
related.

2. In the yeast Saccharomyces cerevisiae, the major pathway for peroxisome proliferation
is growth and division. However, the extent to which de novo formation contributes
to peroxisome renewal in other microorganisms and during developmental transitions
remains to be determined.

3. PMPs appear to traffic both directly to the peroxisome and via the ER. Understanding the
intrinsic targeting signals, chaperones, and membrane integrases that differentiate these
pathways will help clarify the mechanisms involved in peroxisome membrane biogenesis.

4. Peroxisomes have been associated with signal transduction and developmental decisions,
but more work is required to determine their precise roles in these processes.

5. As genomes are sequenced in diverse eukaryotes, bioinformatic searches for PTS1 signals
in predicted proteomes can be used to further explore peroxisome diversity.
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82. Léon S, Zhang L, McDonald WH, Yates J, Cregg JM, Subramani S. 2006. Dynamics of the peroxisomal
import cycle of PpPex20p: ubiquitin-dependent localization and regulation. J. Cell Biol. 172(1):67–78

83. Shows that a
piggyback-imported
matrix oligomer can
increase import
efficiency and promote
functional peroxisome
differentiation.

83. Liu F, Lu Y, Pieuchot L, Dhavale T, Jedd G. 2011. Import oligomers induce positive feedback
to promote peroxisome differentiation and control organelle abundance. Dev. Cell 21(3):457–68

84. Liu F, Ng SK, Lu Y, Low W, Lai J, Jedd G. 2008. Making two organelles from one: Woronin body
biogenesis by peroxisomal protein sorting. J. Cell Biol. 180(2):325–39

85. Ma C, Agrawal G, Subramani S. 2011. Peroxisome assembly: matrix and membrane protein biogenesis.
J. Cell Biol. 193(1):7–16

86. Ma C, Schumann U, Rayapuram N, Subramani S. 2009. The peroxisomal matrix import of Pex8p requires
only PTS receptors and Pex14p. Mol. Biol. Cell 20(16):3680–89

87. Magliano P, Flipphi M, Arpat BA, Delessert S, Poirier Y. 2011. Contributions of the peroxisome and
the β-oxidation cycle to biotin synthesis in fungi. J. Biol. Chem. 286(49):42133–40
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